K+ Channel Regulator KCR1 Suppresses Heart Rhythm by Modulating the Pacemaker Current If

نویسندگان

  • Guido Michels
  • Fikret Er
  • Ismail F. Khan
  • Jeannette Endres-Becker
  • Mathias C. Brandt
  • Natig Gassanov
  • David C. Johns
  • Uta C. Hoppe
چکیده

Hyperpolarization-activated, cyclic nucleotide sensitive (HCN) channels underlie the pacemaker current I(f), which plays an essential role in spontaneous cardiac activity. HCN channel subunits (HCN1-4) are believed to be modulated by additional regulatory proteins, which still have to be identified. Using biochemistry, molecularbiology and electrophysiology methods we demonstrate a protein-protein interaction between HCN2 and the K(+) channel regulator protein 1, named KCR1. In coimmunoprecipitation experiments we show that KCR1 and HCN2 proteins are able to associate. Heterologously expressed HCN2 whole-cell current density was significantly decreased by KCR1. KCR1 profoundly suppressed I(HCN2) single-channel activity, indicating a functional interaction between KCR1 and the HCN2 channel subunit. Endogenous KCR1 expression could be detected in adult and neonatal rat ventriculocytes. Adenoviral-mediated overexpression of KCR1 in rat cardiomyocytes (i) reduced I(f) whole-cell currents, (ii) suppressed most single-channel gating parameters, (iii) altered the activation kinetics, (iv) suppressed spontaneous action potential activity, and (v) the beating rate. More importantly, siRNA-based knock-down of endogenous KCR1 increased the native I(f) current size and single-channel activity and accelerated spontaneous beating rate, supporting an inhibitory action of endogenous KCR1 on native I(f). Our observations demonstrate for the first time that KCR1 modulates I(HCN2)/I(f) channel gating and indicate that KCR1 serves as a regulator of cardiac automaticity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

تفاوتهای ناحیه ای در نقش جریان یونی if در تولید پتانسیلهای پیس میکری سلولهای گره سینوسی – دهلیزی دست نخورده و سالم قلب خرگوش

Background: The sinoatrial (SA) node is not a uniform tissue in terms of its histology and electrophysiology. The regional differences in action potential configuration are well known, for which the difference on ionic currents underlying the regional differences in electrical activity is the most probable cause. The ionic current "if" is though to play a major role in SA node for pace maker sl...

متن کامل

Control of Cardiac Rhythm by ORK1, a Drosophila Two-Pore Domain Potassium Channel

Unravelling the mechanisms controlling cardiac automatism is critical to our comprehension of heart development and cardiac physiopathology. Despite the extensive characterization of the ionic currents at work in cardiac pacemakers, the precise mechanisms initiating spontaneous rhythmic activity and, particularly, those responsible for the specific control of the pacemaker frequency are still m...

متن کامل

Funny channel-based pacemaking.

A a o ntroduction hat is the origin of normal cardiac pacemaking is an bviously intriguing question, given the fundamental role of acemaker activity in cardiac function. According to early tudies based on experiments in Purkinje fibers, pacemaking as first attributed to the decay of an outward current during iastolic depolarization. The process leading to generation f diastolic depolarization, ...

متن کامل

The fungal pathogen Magnaporthe oryzae suppresses innate immunity by modulating a host potassium channel

Potassium (K+) is required by plants for growth and development, and also contributes to immunity against pathogens. However, it has not been established whether pathogens modulate host K+ signaling pathways to enhance virulence and subvert host immunity. Here, we show that the effector protein AvrPiz-t from the rice blast pathogen Magnaporthe oryzae targets a K+ channel to subvert plant immuni...

متن کامل

Pacemaker Created in Human Ventricle by Depressing Inward-Rectifier K⁺ Current: A Simulation Study.

Cardiac conduction disorders are common diseases which cause slow heart rate and syncope. The best way to treat these diseases by now is to implant electronic pacemakers, which, yet, have many disadvantages, such as the limited battery life and infection. Biopacemaker has been expected to replace the electronic devices. Automatic ventricular myocytes (VMs) could show pacemaker activity, which w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • PLoS ONE

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2008